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Abstract. Inelastic QED processes, the cross sections of which do not drop with increasing energy, play
an important role at high-energy colliders. Such reactions have the form of two-jet processes with the
exchange of a virtual photon in the t-channel. We consider them in the region of small scattering angles
m/E � θ � 1, which yields the dominant contribution to their total cross sections. A new effective method
is presented and applied to QED processes with emission of real photons to calculate the helicity amplitudes
of these processes. Its basic idea is similar to the well-known equivalent-lepton method. Compact analytical
expressions for those amplitudes up to e8 are derived omitting only terms of the order of m2/E2, θ2, θm/E
and higher order. The helicity amplitudes are presented in a compact form in which large compensating
terms are already cancelled. Some common properties for all jet-like processes are found and we discuss
their origin.

1 Introduction

1.1 Subject of the paper

Accelerators with high-energy colliding e+e−, γe, γγ and
µ+µ− beams are now widely used or designed to study
fundamental interactions [1]. Some processes of quantum
electrodynamics (QED) might play an important role at
these colliders, especially those inelastic processes the
cross section of which do not drop with increasing energy.
For this reason and since, in principle, the planned col-
liders will be able to work with polarized particles, these
QED processes are required to be described in full detail,
including the calculation of their amplitudes with definite
helicities of all initial and final particles – leptons (l = e
or µ) and photons γ. These reactions have the form of a
two-jet process with the exchange of a virtual photon γ∗
in the t-channel (Fig. 1).

We define by a jet kinematics in QED a high-energy
reaction in which the outgoing particles (leptons and pho-
tons) are produced within a small cone θi � 1 relative to
the propagation axis of their respective parental incoming
particle. We work in the collider reference frame in which
the initial particles with 4-momenta p1 and p2 perform a
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Fig. 1. Generic block diagram of the two-jet process ee →
jet1jet2

head-on collision with respective energies E1 and E2 of
the same order. The subject of our consideration is the
jet-like process of Fig. 1 at high energies (mi is a lepton
mass),

s = 2p1p2 = 4E1E2 � m2
i , (1)

for arbitrary helicities of leptons, λi = ±1/2, and pho-
tons, Λi = ±1. The emission and scattering angles θi are
allowed to be much smaller than unity, though they may
be of the order of the typical emission angles mi/Ei or
larger. Stated differently, the transverse momenta of the
final particles pi⊥ are allowed to be of the order of the
lepton mass or larger:

mi

Ei
� θi � 1, mi � |pi⊥| � Ei. (2)

The processes under discussion have large total cross
sections. Therefore, they present an essential background
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and they determine particle losses in the beams and the
beam life time. Since all these processes can be calcu-
lated with high accuracy independently of any model of
strong interaction, they can usefully serve for monitoring
the luminosity and polarization of colliding beams. Be-
sides, there is a specific feature exhibited by some of jet-
like processes – the so-called MD or beam-size effect (see
the review in [2] for details).

All these properties of the jet-like QED processes jus-
tify the growing interest in them in both the experimental
and theoretical communities in high-energy physics. Par-
ticular problems related to these processes were discussed
in a number of original papers [3–24] and in reviews such
as [25,26,2]. But only recently (see [24]) the highly ac-
curate analytical calculation of the helicity amplitudes of
all jet-like processes up to e4 (shown in Figs. 2–10) was
completed.

In the above-mentioned original papers different ap-
proaches and notations have been used. Here we develop
a new simple and effective method to calculate jet-like
processes and apply it to QED processes with emission of
real photons. In particular, we consider in detail the case
of the emission of up to three photons along the direction
of the initial particle (Fig. 11).

It is quite important to realize that at high energies,
(1), the region of scattering angles (2) gives the dominant
contribution to the cross sections of all QED jet-like pro-
cesses such as those shown in Figs. 2–11. Just in this region
the amplitudes of these processes can be found in a “final
form” including the polarizations of all particles. By this
we mean that we obtain compact and simple analytical
expressions for all helicity amplitudes with high accuracy,
omitting only terms of the order of

m2
i

E2
i

, θ2i , θi · mi

Ei
(3)

or higher order. Namely, the amplitudeMfi of any process
given in Figs. 1–11 can be presented in a simple factorized
form:

Mfi =
s

q2
J1J2, (4)

where the impact factors J1 and J2 do not depend on s.
The impact factor J1 corresponds to the first jet (or the
upper block) and the impact factor J2 corresponds to the
second jet (or the lower block) of Fig. 1.

We give analytical expressions for these impact factors.
They are not only compact but are also very convenient
for numerical calculations. The reason is that we present
the impact factors in such a form that large compensat-
ing terms are already cancelled. It is well known that
this problem of large compensating terms is very difficult
to manage in all computer packages like CompHEP [27]
which automatically generate matrix elements and com-
pute cross sections.

It should be noted that the discussed approximation
differs considerably from the known approach of the CAL-
CUL group and others [28] by whom such processes are
calculated for not too small scattering angles θi � mi/Ei.
In that approach terms of the order of mi/|pi⊥| are ne-
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Fig. 2. Single bremsstrahlung in ee collisions: ee → eeγ
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Fig. 3. Single lepton pair production in γe collisions: γe →
l+l−e

glected, which, however, may give the dominant contribu-
tion to the total cross sections.

To get the high-energy helicity amplitudes in the jet-
like kinematics as compact analytical expressions and to
make the calculations very efficient we systematically ex-
ploit three basic ideas:
(i) a convenient decomposition of all 4-momenta into large
and small components (using the so-called Sudakov or
light-cone variables);
(ii) gauge invariance of the amplitudes is used in order to
combine large terms into finite expressions;
(iii) the calculations are considerably simplified in replac-
ing the numerators of lepton propagators by vertices in-
volving real leptons and antileptons.

All these ideas are not new. In particular, the last one
is the basis of the equivalent-lepton method [4,14,22] and
has been used to calculate some QCD amplitudes with
massless quarks [29]. However, as we will demonstrate in
the present paper, the combination of these ideas leads
to a very efficient way in calculating the amplitudes of
interest in the jet kinematics here considered.

1.2 Jet-like QED processes up to fourth order
with nondecreasing cross sections

We consider electromagnetic interactions of electrons,
positrons and photons on tree level in high-energy ee, eγ
and γγ collisions.

To third and fourth orders in the electromagnetic cou-
pling e the corresponding jet-like QED processes in the
form of block diagrams are shown in Figs. 2–10. Solid lines
represent leptons, the dashed one photons. Only those di-
agrams are drawn that give the dominant contributions at
high energies.

The third order processes are single bremsstrahlung
in e±e collisions (Fig. 2) and single lepton pair l+l− pro-
duction in γe collisions (Fig. 3). To the fourth order pro-
cesses belong lepton pair production and bremsstrahlung
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Fig. 4. Double bremsstrahlung with single photons along each
initial lepton direction: ee → eeγγ
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Fig. 5. Double lepton pair production in γγ collisions: γγ →
e+e−l+l−
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Fig. 6. The process γe → l+l−eγ with a final photon along
the initial lepton direction
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Fig. 7. Two-photon pair production in ee collisions: ee →
eel−l+

in various combinations, including simple combinations of
the above-mentioned third order processes (Figs. 4–6) and
new types of reactions (Figs. 7–10).

The discussed processes are important for the following
reasons.
(1) Some of these reactions are used (or are proposed to
be used) as monitoring processes to determine the collider
luminosity and to measure the polarization of the colliding
particles. For example, the double bremsstrahlung process
(Fig. 4) has been used as the standard calibration process
at several colliders in Novosibirsk, Frascati and Orsay [30,
31]. In [32] it has been suggested that one might use the
single bremsstrahlung process (Fig. 2) for measuring the
luminosity and the polarization of the initial e± at the
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Fig. 8. Bremsstrahlung pair production in ee collisions: ee →
eel+l−
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Fig. 9. Double bremsstrahlung ee → eeγγ with two photons
along the direction of one initial lepton
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Fig. 10. The process γe → γl+l−e with the both final photon
and lepton pair along the direction of the initial photon

✚✙
✛✘

✲

✲

✻

✲

✲
✲
✲
✲

Fig. 11. Triple bremsstrahlung ee → eeγγγ with three pho-
tons along the direction of one initial lepton

LEP collider (see also [33]). As was demonstrated experi-
mentally (see [34]), that process has a good chance to be
used for luminosity purposes. The same process has been
proposed [35] to measure the luminosity at the DAΦNE
collider (see also [36]). The processes γγ → µ+µ−e+e−
and γγ → µ+µ−µ+µ− of Fig. 5 may be useful to moni-
tor colliding γγ beams [37,20,38]. Finally, the possibility
of designing µ+µ− colliders is widely discussed at present.
Therefore, the processes µ+µ− → l+l−l+l− (l = e, µ) may
be useful for luminosity measurements at those colliders
[39]. Recently, the processes of Figs. 7 and 8 have been
taken into account as radiative corrections to the unpo-
larized Bhabha scattering used as calibration process at
LEP [40].
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(2) Due to their large cross sections those reactions con-
tribute as a significant background to a number of ex-
periments in the electroweak sector and to hadronic cross
sections. For example, the background process e+e− →
e+e−µ+µ− is of special importance for experiments study-
ing two-photon and bremsstrahlung production of π+π−
systems due to the known experimental difficulties in dis-
criminating pions and muons [41].
(3) The bremsstrahlung process of Fig. 2 is of special im-
portance for storage rings since it is the leading beam loss
mechanism: after emitting a photon with energy above ap-
proximately 1%, the electron leaves the beam. Therefore,
the luminosity and the beam life time of the e+e− storage
rings depends strongly on the properties of this reaction
[42].
(4) The methods to calculate the helicity amplitudes of
these processes and to obtain some distributions for the
latter can easily be translated to several semihard QCD
processes such as γγ → qq̄QQ̄ [20] (q and Q are different
quarks) and γγ → MM ′, γγ → Mqq̄ [43] (M,M ′ denote
neutral mesons such as ρ0, ω, φ, Ψ, π0, a2...).

The outline of this paper is as follows. In Sect. 2 we
describe the method for the calculation of the helicity am-
plitudes. In the next section we derive all vertices neces-
sary for the bremsstrahlung processes and discuss their
properties. Sections 4–6 are devoted to the calculation of
the impact factors for single, double and multiple brems-
strahlung. Some general properties of the impact factors
are discussed in Sect. 7. The final chapter summarizes our
results. In the appendix we collect some formulae for the
Dirac bispinors and matrices in the so-called spinor or
chiral representation that appears to be useful for calcu-
lations in the region of small angles.

2 Method for calculation
of helicity amplitudes

2.1 Sudakov or light-cone variables

Let us introduce some notation using the block diagram of
Fig. 1 for example. We use a collider reference frame with
the z-axis along the momentum p1; the azimuthal angles
are denoted by ϕi (they are referred to one fixed x-axis). It
is convenient to introduce the light-like 4-vectors P1 and
P2:

P1 = p1 − m2
1

sa
p2, P2 = p2 − m2

2

sa
p1, P 2

1 = P 2
2 = 0,

s = 2p1p2,

s̃ = (P1 + P2)2 = 2P1P2 = s
(
1 − 4ε

a
+
ε

a2

)
, (5)

a =
1
2
(
1 +

√
1 − 4ε

) ≈ 1 − ε, ε =
m2

1m
2
2

s2

and to decompose any 4-vector A into components in the
plane spanned by the 4-vectors P1 and P2 and components
in the plane orthogonal to them:

A = xAP1 + yAP2 +A⊥, A2 = s̃xAyA +A2
⊥,

xA =
2AP2

s̃
, yA =

2AP1

s̃
. (6)

The parameters xA and yA are the so-called Sudakov vari-
ables (they often are referred also as light-cone variables).
In the used reference frame

P1 = E1a1(1, 0, 0, 1), P2 = E2a2(1, 0, 0,−1),

ai = 1 − m2
i

E2
i a

≈ 1 − m2
i

E2
i

,

and the 4-vector A⊥ has x and y components only, e.g.

A⊥ = (0, Ax, Ay, 0) = (0,A⊥, 0), A2
⊥ = −A2

⊥.

Omitting terms of the order of ε only, we have

s̃ = s, A2 = sxAyA −A2
⊥, xA =

2AP2

s
, yA =

2AP1

s
.

For the colliding particles the Sudakov variables are

x1 = 1, y1 =
m2

1

s
, x2 =

m2
2

s
, y2 = 1. (7)

We also note the useful relation for all external momenta

p2i = m2
i = sxiyi − p2

i⊥ (8)

which means that for each external momentum only three
parameters are independent (say xi and pi⊥ for the first
jet).

The 4-vectors pi of particles from the first jet have
large components along P1 and small ones along P2. There-
fore, in the limit s → ∞ [with accuracy (3)] the parame-
ters

xi =
2piP2

s
=
Ei

E1
, i ∈ jet1, (9)

are finite, whereas

yi =
2piP1

s
=
m2

i + p2
i⊥

sxi
, i ∈ jet1, (10)

are small. The Sudakov variable xi is the fraction of the
energy of the first incoming particle carried by the ith
final particle. Analogously, for a 4-vector pl of particles
from the second jet the parameters

yl =
2plP1

s
=
El

E2
, l ∈ jet2, (11)

are finite, whereas

xl =
2plP2

s
=
m2

l + p2
l⊥

syl
, l ∈ jet2, (12)

are small. The parameter yl is the fraction of energy of
the second initial particle carried by the lth final particle.
Since

xq = x2 −
∑

l∈jet2

xl, yq =
∑

i∈jet1

yi − y1,
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the Sudakov parameters for the virtual photon are small
and, therefore,∑

i∈jet1

xi = x1 = 1,
∑

l∈jet2

yl = y2 = 1. (13)

Now we discuss the Sudakov decomposition of the pho-
ton polarization vector, using a final photon from the first
jet for example. We would like to recall that we have cho-
sen a coordinate system with a fixed x-axis transverse to
the beam direction.

Let e ≡ e(Λ)(k) be the polarization 4-vector of that
photon with 4-momentum k and helicity Λ = ±1. Using
gauge invariance, this vector can be replaced by e + ζk.
The arbitrary parameter ζ is chosen in such a way that
the new polarization vector (for which we use the same
notation e) has no a component along P1, i.e.

e = yeP2 + e⊥. (14)

The parameter ye is determined from the condition ek =
0:

sye =
−2k⊥e⊥
xk

, xk =
2kP2

s
. (15)

Since P2P2 = P2e⊥ = 0, the transverse component e⊥
satisfies the usual normalization condition

e
(Λ)∗
⊥ e

(Λ′)
⊥ = e(Λ)∗(k)e(Λ

′)(k) = −δΛΛ′

and can be chosen as

e⊥ ≡ e
(Λ)
⊥ = − Λ√

2
(0, 1, iΛ, 0) = −e(−Λ)∗

⊥ . (16)

Therefore, e⊥ does not depend on the 4-momentum of the
photon k contrary to the polarization vector e itself, which
depends on k via the parameter ye. This, indeed, is very
convenient in the further calculations since we can choose
the same form of the transverse 4-vector e⊥ for all final
photons in the first jet. For the photon with helicity Λ̃ and
polarization vector ẽ = x̃eP1+ ẽ⊥ in the second jet we use
the relation

ẽ
(Λ̃)
⊥ = e(−Λ̃)

⊥ . (17)

In the following we systematically neglect terms of the
relative order of (3).

2.2 Helicity amplitudes in factorized form

The amplitudeMfi corresponding to the diagram of Fig. 1
can be written in the form

Mfi =M
µ
1
gµν

q2
Mν

2 , (18)

where Mµ
1 and Mν

2 are the amplitudes of the upper and
lower block of Fig. 1, respectively, and gµν is the metric
tensor. The transition amplitude M1 describes the scat-
tering of an incoming particle of momentum p1 with a
virtual photon and subsequent transition to the first jet
(similar for M2).

We will show now that the amplitude of the process
can be presented with accuracy (3) in factorized form:

Mfi =
s

q2
J1J2,

J1 =
√
2
s
Mµ

1 P2µ, J2 =
√
2
s
Mν

2 P1ν . (19)

In the limit s → ∞ the quantity J1 (J2), called the impact
factor, can be calculated, assuming that the energy frac-
tions xi (yl) and transverse momenta of the final particles
pi⊥ (pl⊥) remain finite. Therefore, the impact factor J1
depends on xi,pi⊥ with i ∈ jet1 and on the helicities of the
first particle and of the particles in the first jet. Note that
the impact factor J1 (J2) results from the contraction of
the corresponding amplitude with the light-like 4-vector
P2 (P1).

To show the factorization, we present the metric tensor
gµν in the form

gµν =
(P1 + P2)µ(P1 + P2)ν

(P1 + P2)2

+
(P1 − P2)µ(P1 − P2)ν

(P1 − P2)2
+ gµν

⊥

=
2(Pµ

2 P
ν
1 + Pµ

1 P
ν
2 )

s̃
+ gµν

⊥ . (20)

The first equality can be easily checked in the cms where
P1 = (s̃1/2/2)(1, 0, 0, 1) and P2 = (s̃1/2/2)(1, 0, 0,−1).
Note that (20) are exact. Using this expression for the
metric tensor in (18), we obtain the amplitude as a sum
of three terms:

Mfi =
2
s̃q2

(Mµ
1 P2µ) (Mν

2 P1ν)

+
2
s̃q2

(Mµ
1 P1µ) (Mν

2 P2ν) +M
µ
1
g⊥µν

q2
Mν

2 . (21)

Let us estimate the contribution of each of these terms
toMfi. The amplitudeMµ

1 of the upper block depends on
the momentum of the first particle p1, on the momenta pi

of the particles in the first jet and on the momentum q of
the virtual photon. Since p1 and pi have large components
along P1 and small components along P2 and q has small
components both along P1 and along P2, one obtains the
estimates

Mµ
1 P1µ ∝ s0, Mµ

1 P2µ ∝ s, (22)

and analogously

Mν
2 P1ν ∝ s, Mν

2 P2ν ∝ s0. (23)

By virtue of these estimates, only the first term in (21)
can give a contribution proportional to s. As a result, we
can use the representation (19) for this amplitude of the
process.

It is useful to point out another form of (19). Due
to gauge invariance of the amplitude with respect to the
virtual photon we have

qµM
µ
1 = (xqP1 + yqP2 + q⊥)µM

µ
1 = 0. (24)
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Taking into account that xq is small, one finds xqP1µM
µ
1 ∝

1/s, whereas yqP2µM
µ
1 ∝ s0 and q⊥µM

µ
1 ∝ s0 which leads

to
Mµ

1 P2µ = −Mµ
1
q⊥µ

yq
. (25)

Analogously, we find for the second amplitude Mµ
2 P1µ =

−Mµ
2 q⊥µ/xq. Therefore, we can represent the impact fac-

tors in the form

J1 = −
√
2

syq
Mµ

1 q⊥µ, J2 = −
√
2

sxq
Mν

2 q⊥ν . (26)

In other words, up to a factor[
−
√

−2q2⊥/(syq)
]
,

the impact factor J1 coincides with an amplitude describ-
ing the scattering of the first incoming particle with the
virtual photon of “mass” squared q2 and polarization 4-
vector

q⊥µ/
√

−q2⊥.
The representations (26) of the impact factors are very

important. They show that at small transverse momen-
tum of the exchanged photon both impact factors should
behave as

J1,2 ∝ |q⊥| at q⊥ → 0. (27)

In our further analysis we will combine various contribu-
tions of the impact factor into expressions which clearly
exhibit such a behavior. The detailed properties of the
impact factors are described in Sects. 4–7.

2.3 Vertices instead of spinor lines

Let us consider a virtual electron in the amplitude M1
with 4-momentum p = (E,p), energy E > 0 and virtuality
p2 − m2. Due to jet kinematics, its virtuality is small,
|p2 −m2| � E2. We introduce an artificial energy

Ep =
√
m2 + p2

and the bispinors u(λ)
p and v(λ)

p corresponding to a real
electron and a real positron with 3-momentum p and en-
ergy Ep (the exact expressions for these bispinors are given
in the appendix). In the high-energy limit this artificial
energy is close to the true one:

E − Ep

E + Ep
=

p2 −m2

(E + Ep)2
≈ p2 −m2

4E2 . (28)

Since

u(λ)
p ū(λ)

p = Epγ
0 − pγ +m, (29)

v
(λ)
−p v̄

(λ)
−p = Epγ

0 + pγ −m,
we have the exact identity for the numerator of a virtual
electron [14]:

p̂+m =
E + Ep

2Ep
u(λ)

p ū(λ)
p +

E − Ep

2Ep
v
(λ)
−p v̄

(λ)
−p, (30)

where summation over the helicities λ = ±1/2 is under-
stood. Taking into account the approximation (28), we
will use this expression in the simpler form1

p̂+m ≈ u(λ)
p ū(λ)

p +
p2 −m2

4E2 v
(λ)
−p v̄

(λ)
−p. (31)

Moreover, since

v
(λ)
−p v̄

(λ)
−p = Epγ

0 + pγ −m = xvP̂1 + yvP̂2 + p̂⊥ −m,
with the Sudakov variables (in the given accuracy)

xv =
m2 − p2⊥
4EE1

, yv =
E

E2
,

we can represent the numerator p̂+m in another form:

p̂+m ≈ u(λ)
p ū(λ)

p +
p2 −m2

4EE2
P̂2. (32)

Omitting terms of the order of (3) or higher, the expres-
sions (31) and (32) are exact.

Using (31) for all virtual electrons (of small virtuality)
appearing in the impact factors, we are able to substi-
tute the numerators of all spinor propagators by transition
currents (or generalized vertices) involving real electrons
and real positrons. As we will show in the next section,
those generalized vertices are finite in the limit s → ∞.
On the contrary, a numerator like p̂ +m is in that limit
a sum of a finite term p̂⊥ + m and an unpleasant com-
bination Eγ0 − pzγz of large terms that requires special
care. Therefore, those replacements significantly simplify
all calculations of the impact factors Ji.

Let us notice some important technical points when
calculating spinor products appearing in the impact fac-
tors.
(1) If an electron line with numerator p̂+m connects ver-
tices with the emission of one real and one virtual photon,
we have the following spinor structure around p̂+m:

ê∗(p̂+m)P̂2 or P̂2(p̂+m)ê∗.

In this particular case (using (32) and taking into account
P̂2P̂2 = 0) we obtain the simple substitution rule

p̂+m → u(λ)
p ū(λ)

p . (33)

From this discussion it is obvious that within accuracy
(3) the following possible generalized vertices will not ap-
pear in the calculation of impact factors:

v̄
(λ′)
−p′ P̂2v

(λ)
−p. (34)

(2) A vertex with an emission of a real photon, ê∗, has the
“environment”

(p̂′ +m)ê∗(p̂+m).
1 Analogously, for the numerator of the propagator for a vir-

tual positron with 4-momentum p = (E, p) and energy E > 0
we find the form

p̂ − m ≈ v(λ)
p v̄(λ)

p +
p2 − m2

4E2 u
(λ)
−pū

(λ)
−p
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If we use (31) in the form p̂+m = â+ b̂ and p̂′+m = â′+ b̂′

with â = u(λ)
p ū

(λ)
p , b̂ = (p2−m2)v(λ)

−p v̄
(λ)
−p/(4E

2) and similar
expressions for â′, b̂′, we obtain four terms:

(p̂′ +m)ê∗(p̂+m) = â′ê∗â+ â′ê∗b̂+ b̂′ê∗â+ b̂′ê∗b̂.

The last term in this expression is zero, which can be
shown as follows: using for b̂ the form b̂ = (p2 −m2)P̂2/

(4EE2) [see (32)], and a similar one for b̂′, and taking into
account (14), one finds

b̂′ê∗b̂ ∝ P̂2ê
∗P̂2 = P̂2

(
yeP̂2 + ê⊥

)∗
P̂2 = 0. (35)

From this observation we conclude that in the calculations
of the impact factors generalized vertices of the type

v̄
(λ′)
−p′ ê

∗v(λ)
−p (36)

are also absent.
(3) It is easy to check that

ū
(λ′)
p′ ê

∗v(λ)
−p = v̄(λ

′)
−p′ ê

∗u(λ)
p .

(4) Due to the absence of vertices (34) and (36) general-
ized vertices of “exchange” type can appear only in pairs
(changing the electron state to positron states with neg-
ative 3-momentum and back to an electron state) in the
subsequent emission of two real photons.

3 Vertices for bremsstrahlung processes

3.1 The e(p) → e(p′) + γ(k)
and e(p) + γ∗(q) → e(p′) transitions

To calculate the impact factors involving the emission of
real photons we need only two types of vertices: those for
the transition e(p) → e(p′) + γ(k) where γ(k) is a real
photon with helicity Λ and the vertex for the transition
e(p) + γ∗(q) → e(p′) where γ∗(q) is a virtual photon with
energy fraction xq = 0 (within our accuracy).

The following vertices belong to the first type2:

V (p, k) ≡ V Λ
λλ′(p, k) = ū(λ′)

p′ ê
(Λ)∗u(λ)

p , (37)

Ṽ (p, k) ≡ Ṽ Λ
λλ′(p, k) = ū(λ′)

p′ ê
(Λ)∗v(λ)

−p = v̄(λ
′)

−p′ ê
(Λ)∗u(λ)

p .

(38)

Certainly, the calculation of these vertices does not depend
on the concrete representation of bispinors and γ matrices,
but it is very convenient to use the spinor representation

2 We define the vertices as follows: in writing the amplitude
or impact factor from left to right we follow the electron line
from its beginning to its end. In our case this is more natural
than going in the opposite direction along the electron line as
usually done

described in the appendix. The result of calculation with
accuracy (3) is the following:

V (p, k) =
[
δλλ′2

(
e(Λ)∗p

)
(1 − xδΛ,−2λ)

+ δλ,−λ′δΛ,2λ

√
2mx

]
Φ, (39)

Ṽ (p, k) = −2
√
2ΛE′δλ,−λ′δΛ,2λΦ, (40)

where

x =
ω

E
, Φ =

√
E

E′ e
i(λ′ϕ′−λϕ). (41)

It is useful to recall here that for the polarization vectors
e [see (14)] we have

ep = e⊥

(
p⊥ − k⊥

x

)
. (42)

The vertex of the second type is very simple:

V (p) ≡ Vλλ′(p) =
√
2
s
ū

(λ′)
p′ P̂2u

(λ)
p =

√
2
E

E1
δλλ′Φ. (43)

Let us make some general remarks related to (39)–(43).
(1) We have previously mentioned [after (19)] that the im-
pact factors remain finite in the high-energy limit s → ∞.
Now we observe from (39), (42) and (43) that the ver-
tices V (p, k) and V (p) are finite in that limit too. Due
to properties (3) and (4) discussed in Sect. 2.3 the “ex-
change” vertices Ṽ appear only in combinations [(p2 −
m2)/(4E2)]Ṽ (p − ki, ki)Ṽ (p, ki+1) which also remain fi-
nite. Indeed, the factor p2 −m2 (denominator of the con-
sidered lepton propagator between neighbouring real pho-
tons) gives the finite virtuality in the high-energy limit,
the 1/E2 factor combines with the energies E and E′ =
E − ωi+1 according to (38) to an energy independent fac-
tor. All calculations are exact up to neglected pieces of
the order of (3).
(2) For the bremsstrahlung of n real photons along an
electron line, the production of factors Φ, corresponding
to the emission of n real photons and one virtual photon,

Φ1Φ2...ΦnΦq =
√
E1

E3
ei(λ3ϕ3−λ1ϕ1) (44)

is proportional to a phase factor which can be included in
the definition of the corresponding amplitude. Therefore,
in the calculation of this amplitude we can omit all factors
Φ appearing in (39), (40) and (43).
(3) Up to now we have considered the bremsstrahlung by
electrons. It is quite natural that the presented formulae
are also valid for the bremsstrahlung by positrons. Let
us consider, for example, the vertex v̄(λ)

p ê(Λ)∗v(λ
′)

p′ which
corresponds to the e+(p) → e+(p′)+γ(k) transition. If we
take into account the relations for bispinors

v
(λ′)
p′ = C

(
ū

(λ′)
p′

)T
, (45)

v̄(λ)
p =

(
Cu(λ)

p

)T
=
(
u(λ)

p

)T
CT = −

(
u(λ)

p

)T
C−1,
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and for the γ matrices

C−1ê(Λ)∗C = −
(
ê(Λ)∗

)T
(46)

(here the matrix C = γ2γ0 is related to the charge conju-
gation operator; see the appendix), we immediately obtain

v̄(λ)
p ê(Λ)∗v(λ

′)
p′ = ū(λ′)

p′ ê
(Λ)∗u(λ)

p ≡ V (p, k). (47)

3.2 Helicity conserving
and helicity non-conserving vertices

In the further calculations we need only formulae (37)–
(44). But for reference reasons it is convenient to rewrite
them for some particular cases, omitting the factors Φ.

In the case of the helicity conserved (HC) transitions,
λ′ = λ, the vertices are of the form:

V (p, k) = 2e∗p for Λ = 2λ = 2λ′, (48)
V (p, k) = 2e∗p(1 − x) for Λ = −2λ = −2λ′, (49)

V (p) =
√
2E/E1, (50)

Ṽ (p, k) = 0 (51)

and additionally [taking into account (42)]

2e(+)∗p =
√
2z∗, 2e(−)∗p = −

√
2z,

z = px + ipy − kx + iky

x
. (52)

In the case of the helicity non-conserving (HNC) tran-
sitions, λ′ = −λ, we have3

V +
+−(p, k) = V −

−+(p, k) =
√
2mx, (53)

Ṽ +
+−(p, k) = −Ṽ −

−+(p, k) = −2
√
2E′, (54)

V −
+−(p, k) = V +

−+(p, k) = Ṽ
−
+−(p, k) (55)

= Ṽ +
−+(p, k) = V+−(p) = V−+(p) = 0.

3.3 Properties of vertices

From the derived expressions for the vertices the following
properties can be found.
(1) Vertices with a maximal change of helicity,

max |∆λ| = max |Λ+ λ′ − λ| = 2, (56)

are absent, which can be seen from (55). This property as
well as property (4) below is a result of the conservation
of the total angular momentum Jz in the strict forward
direction. Indeed, the vertices for HNC transitions do not
depend on the transverse momenta of the particles in the
jet. Therefore, they do not change for transitions setting

3 Here and in the following we use the sign notation both for
the photon polarization Λ = ±1 = ± and the lepton helicity
λ = ±1/2 = ±

✒✑
�✏

✲

✻

✲
✲k

p3p1

q

=

✲ ✲ ✲

✻

		
		

		
		✒k

q

+✲ ✲ ✲
k

q ✻

		
		

		
		✒

Fig. 12. Amplitude for the virtual Compton scattering

all transverse momenta to zero. In other words, those ver-
tices can be calculated for the case of strict forward emis-
sion for which the total angular momentum is conserved:
Jz = λ = Λ+ λ′.
(2) If the produced photon becomes very hard (ω → E)
the initial electron “transmits” its helicity to the photon:

V (p, k) ∝ δΛ,2λ, Ṽ (p, k) → 0, for x → 1. (57)

(3) If the final electron becomes hard (E′ → E, soft pho-
ton limit, x � 1), the initial electron “transmits” its he-
licity to the final electron: in that limit the vertex

V (p, k) = − 2
x
(e∗⊥k⊥) δλλ′ (58)

dominates, which corresponds to the approximation of a
classical current.
(4) For HNC vertices a strong correlation between the
helicities of the initial electron and the photon exists:

Λ = 2λ if λ′ = −λ. (59)

For HC vertices there is no strong correlation between he-
licities of electrons and the photon (excluding the limiting
case of ω → E).
(5) From (48), (49) and (52) it can be seen that

V +
λλ ∝ z∗, V −

λλ ∝ z, (60)

where z is defined in (52).

4 Impact factor for the single bremsstrahlung
e(p1) + γ∗(q) → e(p3) + γ(k)

The impact factor for the single bremsstrahlung corre-
sponds to the virtual Compton scattering (Fig. 12) where
J1 is given as follows:

J1(eλ1 + γ
∗ → eλ3 + γΛ) = 4πα

(
N1

2p1k
− N3

2p3k

)
, (61)
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with

N1 = ū3

√
2P̂2

s
(p̂1 − k̂ +m)ê∗u1,

N3 = ū3ê
∗(p̂3 + k̂ +m)

√
2P̂2

s
u1; (62)

e ≡ e(Λ)(k) is the polarization 4-vector of the final photon.
Here for p̂1 − k̂+m and p̂3 + k̂+m we can use the simple
substitution (33) that allows us to eliminate the numer-
ators of the two spinor propagators and to introduce the
vertices V (p) and V (p, k).

The vertices V (p) are diagonal in the helicity basis and
simply lead to factors 21/2(1 − x) with x = ω/E1 for N1

and 21/2 for N3. As a result, we have

J1 =
√
24πα

[
1 − x
2p1k

V (p1, k) − 1
2p3k

V (p3 + k, k)
]
Φ,

(63)
with the vertices (recall that e(Λ)∗k = 0)

V (p1, k) = δλ1λ32
(
e(Λ)∗p1

)
(1 − xδΛ,−2λ1)

+ δλ1,−λ3δΛ,2λ1

√
2mx, (64)

V (p3 + k, k) = δλ1λ32
(
e(Λ)∗p3

)
(1 − xδΛ,−2λ1)

+ δλ1,−λ3δΛ,2λ1

√
2mx,

and the Φ factor in the form of (44)

Φ =
1√
1 − xe

i(λ3ϕ3−λ1ϕ1). (65)

From (63) it is clear that the properties of J1 are de-
termined by the properties of the vertices described in
Sect. 3.3. In the soft photon limit, x � 1, we have the
usual approximation by classical currents:

J1 =
√
24πα

(
e∗p1
p1k

− e∗p3
p3k

)
Φδλ1λ3 . (66)

The impact factor J1 can be transformed to a form
which clearly exhibits the proportionality J1 ∝ q⊥ result-
ing from the gauge invariance of J1 with respect to the
virtual photon (see (27)). For this purpose we use (64)
and (42) and rewrite

V (p3 + k, k) = V (p1 + q, k) = V (p1, k) (67)

+ 2
(
q⊥e

(Λ)∗
⊥

)
(1 − xδΛ,−2λ1) δλ1λ3 .

This gives the following result:

J1 =
√
24πα [A1V (p1, k) + q⊥B1]Φ, (68)

A1 =
1 − x
2p1k

− 1
2p3k

, B1 = −e
(Λ)∗
⊥
p3k

(1 − xδΛ,−2λ1) δλ1λ3 .

The last term in J1 is directly proportional to q⊥ and it
is not difficult to check that the same is true for the first
term. Indeed, since

2p1k = xa, a = m2 +
k2

⊥
x2 ,

2p3k =
x

1 − xb, b = m2 +
(

q⊥ − k⊥
x

)2

,

we immediately obtain

A1 =
1 − x
x

(
1
a

− 1
b

)
∝ q⊥. (69)

As a result, (68) is a simple and compact expression for all
eight helicity states written in such a form that all indi-
vidual large (compared to q⊥) contributions are cancelled.

Let us discuss the form of J1 for the single bremsstrah-
lung by a positron. We expect that the only difference is
connected with the change of the charge sign −e → +e
in each vertex with the emission of a real or virtual pho-
ton. In our case this gives the additional factor (−1)2 = 1;
therefore,

J1
(
e+λ1

+ γ∗ → e+λ3
+ γΛ

)
= J1

(
e−λ1

+ γ∗ → e−λ3
+ γΛ

)
.

(70)
To give the formal proof of this relation, we take into

account that going over from electron to positron brems-
strahlung the numerators of the electron propagators p̂+m
have to be replaced by −p̂+m for the positrons and the
bispinors u1 and ū3 for the electrons by those for the posi-
trons v̄1 and v3. In addition, a factor (−1) has to be added
according to one of the Feynman rules4. This gives

J1
(
e+λ1

+ γ∗ → e+λ3
+ γΛ

)
= (−1) · 4πα

(
Ñ1

2p1k
− Ñ3

2p3k

)
,

with

Ñ1 = v̄1ê
∗(−p̂1 + k̂ +m)

√
2P̂2

s
v3,

Ñ3 = v̄1

√
2P̂2

s
(−p̂3 − k̂ +m)ê∗v3.

If we take into account (see the appendix and (45) and
(46)) the relations for bispinors

(−1) · v̄1 = − (Cu1)
T = (u1)

T
C−1,

v3 = C (ū3)
T
, (71)

and for spinor propagators

C−1(−p̂+m)C = (p̂+m)T, (72)

and vertices for the real and virtual photons

C−1ê∗C = − (ê∗)T , C−1P̂2C = −
(
P̂2

)T
, (73)

with the matrix C = γ2γ0, we immediately obtain (70).

4 See, for example, rule (9) in the textbook of [45], Sect. 77:
“An additional factor −1 is included in iMfi for... each pair
of positron external lines if these are beginning and end of a
single sequence of a lepton line”
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Fig. 13. Feynman diagrams for the impact factor related to
the double bremsstrahlung; diagrams with k1 ↔ k2 photon
exchange have to be added

The basic equation (63) can be rewritten in another
form, which may be useful in concrete calculations. If we
take into account that

e∗p1 = −e
∗
⊥k⊥
x

, e∗p3 = e∗(p1 + q) = e∗⊥

(
q⊥ − k⊥

x

)
,

(74)
we arrive at the result [21]

J1(eλ1 + γ
∗ → eλ3 + γΛ)

= 8πα
√
1 − x
x

ei(λ3ϕ3−λ1ϕ1) (75)

×
[
(1 − xδΛ,−2λ1)

√
2Te

(Λ)∗
⊥ δλ1λ3 +mxSδλ1,−λ3δΛ,2λ1

]
,

where the transverse 4-vector T (in the used reference
frame T = (0,T , 0), T 2 = −T 2) and the scalar S are de-
fined by

T =
(k⊥/x)
a

+
q⊥ − (k⊥/x)

b
, S =

1
a

− 1
b
, (76)

with the useful relation

T 2 +m2S2 =
q2

⊥
ab
. (77)

Since
T ∝ q⊥, S ∝ q⊥, (78)

we again conclude that J1 ∝ q⊥.

5 Impact factor for the double bremsstrahlung
e(p1) + γ∗(q) → e(p3) + γ(k1) + γ(k2)

5.1 Notation

The impact factor for the double bremsstrahlung corre-
sponds to six diagrams; three of them are shown in Fig. 13.

We indicate explicitly the helicity states of the initial and
final electrons λ1,3 and of the final photons Λ1,2

5:

J1 =
√
2(4πα)3/2X3MΛ1Λ2

λ1λ3
(x1, x2, k1⊥, k2⊥, p3⊥)Φ, (79)

with
Φ =

1√
X3

ei(λ3ϕ3−λ1ϕ1). (80)

Let us stress again that J1 and M do not depend on s.
They depend only on the energy fractions

x1,2 = ω1,2/E1, X3 = E3/E1, x1 + x2 +X3 = 1,

and on the transverse momenta of the final particles in
the first jet.

We also introduce the transverse vectors (j = 1, 2)

q⊥ = k1⊥ + k2⊥ + p3⊥, rj = (X3kj − xjp3)⊥, (81)

and useful complex combinations of the transverse vector
components [cf. (52)]

Kj = kjx + ikjy, Q = qx + iqy, Rj = rjx + irjy. (82)

The polarization 4-vectors ej ≡ e(Λj)(kj) for both final
photons are chosen in the form (14)–(16).

The denominators of the propagators in Fig. 13 are ex-
pressed via the energy fractions and transverse momenta,
as follows:

aj ≡ −(p1 − kj)2 +m2 =
1
xj

(m2x2
j + k2

j⊥),

bj ≡ (p3 + kj)2 −m2 =
1

xjX3
(m2x2

j + r2
j⊥),

a12 = a21 ≡ −(p1 − k1 − k2)2 +m2

= a1 + a2 − 1
x1x2

(x1k2⊥ − x2k1⊥)
2
,

b12 = b21 ≡ (p3 + k1 + k2)2 −m2

= b1 + b2 +
1

x1x2
(x1k2⊥ − x2k1⊥)

2
. (83)

5.2 General formula for the helicity amplitudes

Following the electron line from left to right in the Feyn-
man diagrams in Fig. 13 and writing down the correspond-
ing vertices, we immediately obtain the result for the im-
pact factor J1 or the amplitude M of (79). Moreover, if
the electron line begins or ends at a vertex with the vir-
tual photon (the first and last diagram of Fig. 13), we can
use the simple substitution (33) just as in Sect. 4. In the
other case we use the substitution rule (31). Therefore, for
the first and the third diagrams we get contributions as
products of two adjacent vertices with real photon emis-
sion from electrons with the simple vertex including the
virtual photon. In the case of the second diagram we have

5 Here the amplitude M differs from the same quantity used
in [24] by a factor Sλe3
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only the product of two vertices with real photons emis-
sion from the electron and the eγ∗ → e transition vertex
located in between those vertices.

Taking into account that the eγ∗ → e transition ver-
tices V (p) lead to energy fraction factors 21/2X3, 21/2(1−
x1) and 21/2 for the first, second and third diagram of
Fig. 13, respectively, we find6

M = (1 + P12)M, (84)

X3M =
X3

a1a12
V (p1, k1)V (p1 − k1, k2)

− 1 − x1

a1b2
V (p1, k1)V (p1 − k1 + q, k2)

+
1

b12b2
V (p1 + q, k1)V (p1 − k1 + q, k2)

− X3

a12

Ṽ (p1, k1)Ṽ (p1 − k1, k2)
4(E1 − ω1)2

+
1
b12

Ṽ (p1 + q, k1)Ṽ (p1 − k1 + q, k2)
4(E3 + ω2)2

. (85)

The permutation operator P12 for the photons is defined
by

P12f(k1, e1; k2, e2) = f(k2, e2; k1, e1), P2
12 = 1.

Now we transform J1 to a form which clearly exhibits
the proportionality J1 ∝ q⊥. Using the following proper-
ties of vertices:

V (p1 + q, k1) = V (p1, k1)

+ 2
(
e
(Λ1)∗
⊥ q⊥

)
(1 − x1δΛ1,−2λ1) δλ1λ,

V (p1 − k1, k2) = V (p1 − k1 + q, k2) − 2
(
e
(Λ2)∗
⊥ q⊥

)
×
(
1 − x2

1 − x1
δΛ2,−2λ

)
δλλ3 , (86)

Ṽ (p1 + q, k1) = Ṽ (p1, k1),

Ṽ (p1 − k1 + q, k2) = Ṽ (p1 − k1, k2),
we obtain the result7

X3M
Λ1Λ2
λ1λ3

= A2V
Λ1
λ1λ(p1, k1)V

Λ2
λλ3

(p1 − k1 + q, k2)
+ q⊥B2

Λ1Λ2
λ1λ3

+ Ã2
Ṽ Λ1

λ1λ(p1, k1)Ṽ
Λ2
λλ3

(p1 − k1, k2)
4E2

1(1 − x1)2
, (87)

with the scalars

A2 =
X3

a1a12
− 1 − x1

a1b2
+

1
b12b2

, Ã2 = −X3

a12
+

1
b12
, (88)

6 Let us recall that M , V and Ṽ are matrices with respect
to lepton helicities; in particular,

M = MΛ1Λ2
λ1λ3

, V (p, k1) = V Λ1
λ1λ(p, k1), V (p, k2) = V Λ2

λλ3
(p, k2),

and that in (85) the summation over λ is assumed
7 We explicitly indicate all external helicity states; lepton

helicity λ is summed up

and the transverse 4-vector B2

B2
Λ1Λ2
λ1λ3

= −X3
2e(Λ2)∗

⊥
a1a12

V Λ1
λ1λ3

(p1, k1)

×
(
1 − x2

1 − x1
δΛ2,−2λ3

)
(89)

+
2e(Λ1)∗

⊥
b12b2

V Λ2
λ1λ3

(p1 − k1 + q, k2) (1 − x1δΛ1,−2λ1) .

It is not difficult to check that the quantities A2 and Ã2
vanish in the limit of small q⊥:

A2 ∝ q⊥, Ã2 ∝ q⊥, (90)

whereas B2 is finite in this limit.
Let us stress that (84) together with relation (87) rep-

resents a very simple and compact expression for all 16
helicity states, where all individual large (compared to q⊥)
contributions have been rearranged into finite expressions.

5.3 Explicit expressions for the helicity amplitudes

Due to the parity conservation relation

M−Λ1−Λ2
−λ1−λ3

= −(−1)λ1+λ3

(
MΛ1Λ2

λ1λ3

)∗
, (91)

there are only eight independent helicity states of M
among the whole set of 16. We fix the choice of the in-
dependent amplitudes by fixing the helicity of the initial
electron to λ1 = +1/2 = +. To find the amplitudes with
given initial and final helicities, we start from (87) and
substitute there the expressions for vertices taken from
(48), (49), (52)–(55).

Using the complex combinations (82) we immediately
obtain the amplitudes M :

M++
++ = 2

{
A2

K∗
1R

∗
2

x1x2X3
+
K∗

1Q
∗

x1a1a12
− Q∗R∗

2

x2X3b12b2

}
,

M−−
++ = X3

(
M++

++
)∗
, (92)

M−+
++ = −2(1 − x1)

×
(
A2

K1R
∗
2

x1x2X3
+

K1Q
∗

x1a1a12
− QR∗

2

x2X3b12b2

)
, (93)

M+−
++ =

X3

(1 − x1)2
(
M−+

++
)∗

+
2

1 − x1

(
m2A2

x1x2

X3
− Ã2

)
, (94)

M+−
+− = 2mx1

(
A2

R2

x2X3
+

Q

a1a12

)
,

M−+
+− = 2m

x2

X3

(
A2
K1

x1
− Q

b12b2

)
,

M−−
+− = 0, (95)

M++
+− = − 1

1 − x1

(
X3M

+−
+− +M−+

+−
)∗
. (96)
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Fig. 14. Feynman diagrams for the impact factor related to
the triple bremsstrahlung; diagrams with the exchange of the
final photons have to be added

All expressions are either identical [(92), (93) and (95)]
to the amplitudes in [24] or can be transformed [(94) and
(96)] after some algebra to those amplitudes.

As a result, we obtain all eight independent helicity
amplitudes in the form8

M++
+± = (1 + P12)M++

+± , M−−
++ = X3

(M++
++
)∗
,

M+−
+± = M+−

+± + P12M
−+
+± , M−+

+± = P12M+−
+±, (97)

M−−
+− = 0.

The amplitudes are explicitly proportional to Q or to the
functions A2 and Ã2. Therefore, they vanish ∝ |q⊥| in the
limit |q⊥| → 0.

The spin-flip amplitudes (with λ1 = −λ3) are pro-
portional to the electron mass m and, therefore, they are
negligible compared to the spin non-flip ones for not too
small scattering angles:

m

x1,2E1
� θ1,2 � 1,

m

X3E1
� θ3 � 1. (98)

We also note the explicit Bose symmetry between the two
photons in the amplitudes (98):

MΛ1Λ2
λ1λ3

(K1, x1;K2, x2) = MΛ2Λ1
λ1λ3

(K2, x2;K1, x1). (99)

6 Impact factor
for the multiple bremsstrahlung
e(p1)+ γ∗(q) → e(p3)+ γ(k1)+ . . . + γ(kn)

The generalization of the results obtained in Sects. 4 and 5
to the bremsstrahlung of n photons can be done straight-
forwardly. To demonstrate this, we consider the case n = 3

8 To clarify the notation we stress that in (98) with given
polarizations the operator P12 simply interchanges the indices
1 ↔ 2 and

P12A2 =
X3

a2a12
− 1 − x2

a2b1
+

1
b1b12

(Fig. 14) which clearly shows all nontrivial points of the
multiple bremsstrahlung.

The helicity states of the initial and final electrons λ1,3
and of the final photons Λ1,2,3 are indicated explicitly in
the impact factor:

J1 =
√
2(4πα)2 (100)

× X3MΛ1Λ2Λ3
λ1λ3

(x1, x2, x3, k1⊥, k2⊥, k3⊥, p3⊥)Φ,

where Φ has the form (80). The quantities J1 and M do
not depend on s, but depend only on the energy fractions

x1,2,3 = ω1,2,3/E1, X3 = E3/E1, x1+x2+x3+X3 = 1,

and on the transverse momenta of the final particles in
the first jet with

q⊥ =
3∑

i=1

ki⊥ + p3⊥.

For the denominators of the propagators in the diagrams
of Fig. 14 we use the notation (i, j = 1, 2, 3)

ai = −(p1 − ki)2 +m2,

bi = (p3 + ki)2 −m2,

aij = −(p1 − ki − kj)2 +m2, (101)

bij = (p3 + ki + kj)2 −m2,

a123 = −(p1 − k1 − k2 − k3)2 +m2,

b123 = (p3 + k1 + k2 + k3)2 −m2.

Just as in Sect. 5.2, we obtain

M = (1 + P)(M + M̃), (102)
P = P12 + P23 + P13 + P13P12 + P13P23,

X3M =
X3

a1a12a123
V (p1, k1)

× V (p1 − k1, k2)V (p1 − k1 − k2, k3)
− 1 − x1 − x2

a1a12b3
V (p1, k1)

× V (p1 − k1, k2)V (p1 − k1 − k2 + q, k3)
+

1 − x1

a1b23b3
V (p1, k1) (103)

× V (p1 − k1 + q, k2)V (p1 − k1 − k2 + q, k3)
− 1
b123b23b3

V (p1 + q, k1)

× V (p1 − k1 + q, k2)V (p1 − k1 − k2 + q, k3),

X3M̃ = − X3

a12a123

Ṽ (p1, k1)Ṽ (p1 − k1, k2)
4(E1 − ω1)2

× V (p1 − k1 − k2, k3)
− X3

a12a123
V (p1, k1)

× Ṽ (p1 − k1, k2)Ṽ (p1 − k1 − k2, k3)
4(E1 − ω1 − ω2)2
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+
1 − x1 − x2

a12b3

Ṽ (p1, k1)Ṽ (p1 − k1, k2)
4(E1 − ω1)2

× V (p1 − k1 − k2 + q, k3)
+

1 − x1

a1b23
V (p1, k1) (104)

× Ṽ (p1 − k1 + q, k2)Ṽ (p1 − k1 − k2 + q, k3)
4(E1 − ω1 − ω2)2

− 1
b123b3

Ṽ (p1 + q, k1)Ṽ (p1 − k1 + q, k2)
4(E1 − ω1)2

× V (p1 − k1 − k2 + q, k3)
− 1
b123b23

V (p1 + q, k1)

× Ṽ (p1 − k1 + q, k2)Ṽ (p1 − k1 − k2 + q, k3)
4(E1 − ω1 − ω2)2

.

To show that J1 vanishes as ∝ q⊥ in the limit q⊥ → 0,
we follow the same line of action as in the previous section.
This gives

X3M = A3V (p1, k1)V (p1 − k1, k2)V (p1 − k1 − k2, k3)
+ q⊥B3,

X3M̃ = Ã3
Ṽ (p1, k1)Ṽ (p1 − k1, k2)

4(E1 − ω1)2
V (p1 − k1 − k2, k3)

+ Ã′
3V (p1, k1)

Ṽ (p1 − k1, k2)Ṽ (p1 − k1 − k2, k3)
4(E1 − ω1 − ω2)2

+ q⊥B̃3, (105)

where

A3 =
X3

a1a12a123
− 1 − x1 − x2

a1a12b3
+

1 − x1

a1b23b3
− 1
b123b23b3

,

Ã3 = − X3

a12a123
+

1 − x1 − x2

a12b3
− 1
b123b23

,

Ã′
3 = − X3

a12a123
+

1 − x1

a1b23
− 1
b123b23

, (106)

and the 4-vectors B3 and B̃3 can be easily found from
(104)–(106). The quantities A3, Ã3 and Ã′

3 vanish in the
limit of small q⊥,

A3 ∝ q⊥, Ã3 ∝ q⊥, Ã′
3 ∝ q⊥; (107)

the transverse 4-vectors B3 and B̃3 remain finite in this
limit.

Again, (103) with the relations (105) is a very simple
and compact expression for all 32 helicity states where all
individual large (compared to q⊥) contributions have been
cancelled.

7 Some general properties
of bremsstrahlung impact factors

We discuss now some general properties of impact factors
for the emission of real photons using mainly the double

bremsstrahlung as example. For that case (79), (84) and
(87) define a simple, compact and transparent expression
for the vertex factor which allows one to obtain imme-
diately all general properties obtained in [24] only after
lengthy calculations. All those properties are directly re-
lated to the corresponding properties of vertices discussed
in Sect. 3.3.
(1) Bremsstrahlung amplitudes or impact factors with a
maximal change of helicities are absent since in this case at
least one transition vertex has to appear with a maximal
change of its helicities (= 2) as well. Thus we have

M = 0 formax |∆λ| = n+ 1, (108)

where ∆λ =
∑n

i=1 Λi +λ3 −λ1 is the change of helicity in
the transition from the first initial lepton to the first jet.
In the case of the double bremsstrahlung, this corresponds
to

M−−
+− = M++

−+ = 0.

(2) If one of the final particles in the jet (including the final
lepton) becomes hard (ωi → E1 or E3 → E1), the sign of
the helicity of the initial lepton coincides with that of the
helicity of the hard final particle. This is the consequence
of properties (2) and (3) discussed in Sect. 3.3.
(3) In HNC amplitudes the sign of the helicity of at least
one final photon has to coincide with the sign of the initial
lepton helicity

MΛ1···Λn

λ1 −λ1
∝ δΛi,2λ1 . (109)

(4) The dependence of the whole amplitudeM on complex
parameters of the form z and z∗ defined in (52) can be
easily reproduced for the whole amplitude using (60).

(5) As can be seen from (51), (54) and (55), the Ṽ ver-
tex may contribute only if the electron line connects two
vertices with the emission of real photons. Both these ad-
jacent vertices are HNC-type transitions so that the origi-
nal lepton helicity is re-established after passing these two
vertices going along the lepton line. In our example, this
happens for the two independent amplitudes (contribu-
tions including the A′

2 factor):

M+−
++ =

(M−+
−−
)∗
, M−+

++ =
(M+−

−−
)∗
.

Since the number of real photons is two in that case, the
initial and final lepton helicities have to coincide for those
amplitudes.
(6) It is known that for soft photons (approximation of
classical currents) the bremsstrahlung matrix element fac-
torizes into a term responsible for the soft photon times
an amplitude without the soft photon. In our approach
this can easily be realized using the following arguments.
The form of a vertex in the soft photon limit is given by
(58). Furthermore, a virtual electron propagator close to
a soft photon might have an infrared singularity only, if
the soft photon is either at the beginning or the end of
the electron line in a Feynman diagram. This has also the
consequence that only those diagrams can contribute to
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the soft photon limit. Therefore, for a soft photon at the
beginning of the electron line we have the vertex

V (p1, k1) → − 2
x1

(e(Λ1)∗
⊥ k1⊥)δλ1λ = 2(e(Λ1)∗p1)δλ1λ

and the denominator of the corresponding electron prop-
agator

(p1 − k1)2 −m2 = −2p1k1
(and analogously for the soft photon at the end of the elec-
tron line). The remaining part of the amplitude is then
taken at k1 = 0 and represents the impact factor for n−1
bremsstrahlung photons. As a result, we get the factor-
ization property for the impact factors (assuming the first
photon being soft):

J1

(
eλ1(p1) + γ

∗(q) → eλ3(p3) +
n∑

i=1

γΛi(ki)

)

→
√
4πα

(
e(Λ1)∗p1
p1k1

− e(Λ1)∗p3
p3k1

)
(110)

×J1

(
eλ1(p1) + γ

∗(q) → eλ3(p3) +
n∑

i=2

γΛi(ki)

)
.

The generalization to m soft (first) photons out of n
bremsstrahlung photons is obvious:

J1

(
eλ1(p1) + γ

∗(q) → eλ3(p3) +
n∑

i=1

γΛi(ki)

)

→ (4πα)m/2

{
m∏

i=1

(
e(Λi)∗p1
p1ki

− e(Λi)∗p3
p3ki

)}
(111)

×J1

(
eλ1(p1) + γ

∗(q) → eλ3(p3) +
n∑

i=m+1

γΛi
(ki)

)
.

(7) For a process with the emission of n real photons we
have the relation between the impact factors for initial
positron and electron:

J1(e+λ1
+ γ∗ → e+λ3

+ γΛ1 + ...+ γΛn
) (112)

= (−1)n+1J1(e−λ1
+ γ∗ → e−λ3

+ γΛ1 + ...+ γΛn).

This may be easily proven repeating the arguments given
for the single bremsstrahlung in Sect. 4.
(8) Let us consider the connection between the impact
factor J1 for the first jet discussed in Sect. 3–6 and the
impact factor J2 for the second jet. If the impact factor
J1 is related to the process

eλ1(p1) + γ
∗(q) → eλ3(p3) + γΛ1(k1) + . . .+ γΛn(kn),

it is a function of the following parameters:

J1 ≡ J1(λ1;λ3, X3, p3⊥;Λ1, x1, k1⊥; . . . ;Λn, xn, kn⊥),

where X3 = E3/E1 and xj = ωj/E1. The impact factor
J2, related to the process

eλ2(p2) + γ
∗(−q) → eλ4(p4) + γΛ̃1

(k̃1) + . . .+ γΛ̃n
(k̃n),

depends on the parameters

J2 ≡ J2(λ2;λ4, Y4, p4⊥; Λ̃1, ỹ1, k̃1⊥; . . . ; Λ̃n, ỹn, k̃n⊥)

where Y4 = E4/E2 and ỹj = ω̃j/E2. Any 4-vector k̃ =
(ω,k⊥,−kz) for a particle in the second jet can be ob-
tained from the 4-vector k = (ω,k⊥, kz) for a particle in
the first jet by spatial inversion and further rotation by
an angle π around the new z-axis. Since this operation
changes the signs of helicities of leptons and photons, the
impact factor J2 is derived from J1 by the following sub-
stitution rule:

J2 = J1(−λ2;−λ4, Y4, p4⊥;

−Λ̃1, ỹ1, k̃1⊥; . . . ;−Λ̃n, ỹn, k̃n⊥). (113)

8 Summary

In the present paper we have formulated a new effective
method to calculate all helicity amplitudes for bremsstrah-
lung jet-like QED processes at tree level.

The jet kinematic conditions of (2) here considered
provide the main contribution to the total cross sections
of these processes at high energy. Within this kinematics,
it is possible to obtain simple expressions of helicity am-
plitudes with an accuracy defined by (3). In this region,
these amplitudes can be presented in the simple factorized
form (4), where the impact factors J1 or J2 are propor-
tional to the scattering amplitudes of the first or second
initial lepton with the virtual exchanged photon.

The main advantage of our method consists in the use
of simple universal “building blocks” – transition vertices
with real leptons – which are matrices with respect to lep-
ton helicities. Those vertices replace efficiently the spinor
structure involving leptons of small virtuality in the im-
pact factors, making the calculations short and transpar-
ent for any final helicity state. In the calculations we ex-
ploit a convenient decomposition of all 4-momenta of the
reaction into large and small components involving Su-
dakov (or light-cone) variables.

The vertices themselves or their allowed combinations
with well-defined prefactors (see the discussion in Sect. 3.1)
are finite in the high-energy limit s → ∞. In the case of
bremsstrahlung we have found that only three nonzero
transition vertices are required. The calculation of the
vertices can be conveniently performed using the spinor
or chiral representation of bispinors and γ matrices. The
properties of the vertices, discussed in Sect. 3.3, determine
all nontrivial general properties of the helicity amplitudes
described in Sect. 7.

By construction, the impact factors are finite in the
high-energy limit and depend only on energy fractions and
transverse momenta of particles in the final jet, and on the
helicities of all real photons and leptons.

In Sects. 4–6 we have calculated the impact factors for
single, double and triple bremsstrahlung, following the
same principles. In a first step, we use the allowed ver-
tices to write down the corresponding impact factors; see
(63), (84), (85) and (103)–(105). In the next step, we use
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gauge invariance with respect to the virtual photon of 4-
momentum q and rearrange the impact factors into a form
in which all individual large (compared to q⊥) contribu-
tions have been cancelled, see (68), (75), (87), (98) and
(105). Let us stress here again that the known results for
bremsstrahlung helicity amplitudes to order e2 and e3 are
now obtained almost immediately using this new method,
while handling the spinor structure directly leads to cum-
bersome and tedious calculations in the case, for instance,
of double photon bremsstrahlung. The result of order e4
for the triple bremsstrahlung in one direction is completely
new.

We have also defined rules to go over from impact
factors with initial electrons to those with positrons [see
(112)] and from the impact factors for the first jet to that
for second jet (113).

Those rules together with the found impact factors al-
lows us to give a complete analytic and compact descrip-
tion of all helicity amplitudes in e−e± scattering with the
emission of up to three photons in one lepton direction,
where in the last case 25 ×25 different helicity amplitudes
are involved.

Since by construction individual large contributions
(compared to q⊥) have been rearranged into finite expres-
sions, the expressions obtained for the amplitudes are very
convenient for numerical calculations of various cross sec-
tions.

Until now we have formulated our new method only for
the case of photon bremsstrahlung from leptons. A next
paper will be devoted to QED processes with production
of lepton pairs [46].
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Appendix

In this appendix we collect some useful formulae for the
spinor or chiral representation (see, for example, [44] and
the textbook of [45], Sect. 20, 21 and 26).

We start with the standard representation in which an
electron with momentum p, energy E = (p2+m2)1/2 and
helicity λ = ±1/2 is described by the bispinor

u(λ)
p =

( √
E +m w(λ)(n)

2λ
√
E −m w(λ)(n)

)
,

n =
p

| p | = (sin θ cosϕ, sin θ sinϕ, cos θ).

The two-component spinors w(λ)(n) obey the equations

(σn)w(λ)(n) = 2λw(λ)(n), w(λ)+(n)w(λ′)(n) = δλλ′ ,

and have the form

w(1/2)(n) =


 e−iϕ/2 cos

θ

2
eiϕ/2 sin

θ

2


 ,

w(−1/2)(n) =


−e−iϕ/2 sin

θ

2
eiϕ/2 cos

θ

2


 ,

with properties

σyw
(λ)∗(n) = 2λiw(−λ)(n), w(λ)(−n) = iw(−λ)(n)

(here σ are the Pauli matrices). The normalization condi-
tions are

ū(λ)
p u(λ′)

p = 2mδλλ′ ,
∑

λ

u(λ)
p ū(λ)

p = p̂+m.

For the initial electron with momentum p1 (p2) along (op-
posite) the z-axis we use θ = 0 (θ = π). For the final elec-
tron with momentum p3 in the first jet we use θ = θ3 and
for the final electron with p4 in the second jet θ = π− θ4.

The Dirac matrices in the standard representation are
defined by

γ0 =

(
1 0
0 −1

)
, γ =

(
0 σ

−σ 0

)
,

γ5 =

(
0 −1

−1 0

)
.

A positron with momentum p, energy E = (p2 +
m2)1/2 and helicity λ is described by the bispinor

v(λ)
p = C

(
ū(λ)

p

)T
,

with the charge conjugation matrix

C = γ2γ0, C = −CT = C−1, C−1γµC = −γT
µ .

Therefore, for a positron we get the bispinor

v(λ)
p = i

( √
E −m w(−λ)(n)

−2λ
√
E +m w(−λ)(n)

)
,

with the normalization conditions

v̄(λ)
p v(λ

′)
p = −2mδλλ′ ,

∑
λ

v(λ)
p v̄(λ)

p = p̂−m.

At high energies the bispinors u and v in the standard
representation have top and bottom components of the
same order, ∼ E1/2, with relative corrections ∼ m/E.

A simpler and more convenient structure of bispinors
can be found in the spinor or chiral representation, the
transition to which is given by the matrix

U = U−1 =
1√
2

(
γ0 − γ5) = 1√

2

(
1 1
1 −1

)
.
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In the spinor representation the electron bispinor is

Uu(λ)
p =

1√
2

((√
E +m+ 2λ

√
E −m)w(λ)(n)(√

E +m− 2λ
√
E −m)w(λ)(n)

)
.

At high energies E � m this bispinor has a large top
component ∼ E1/2 and a small bottom component ∼
(m/E1/2) for λ = +1/2 and vice versa for λ = −1/2,
which is very useful for our analysis. Furthermore, in this
representation the corrections to the high-energy asymp-
totics

Uu(λ)
p ≈ √

m


 (2E/m)λ w(λ)(n)

(2E/m)−λ w(λ)(n)




is of the relative order of m2/E2. The approximate for-
mulae for the positron bispinor in that representation are

Uv(λ)
p ≈ 2iλ

√
m


−(2E/m)−λ w(−λ)(n)

(2E/m)λ w(−λ)(n)


 ,

Uv
(λ)
−p ≈ 2λ

√
m


 (2E/m)−λ w(λ)(n)

−(2E/m)λ w(λ)(n)


 .

Omitting terms of the order of θ2, we obtain the fol-
lowing simple expression for the two-component spinor:

w(λ=+1/2)(n) =

(
1
a

)
e−iλϕ,

w(λ=−1/2)(n) =

(
a

1

)
e−iλϕ,

where
a = λθe2iλϕ = − 1√

2E
p⊥e

(−2λ)∗
⊥

and the 4-vector e(Λ)
⊥ is given in (16).

To calculate the vertices (37), (38) and (43) in the
spinor representation we need the two matrices

Uγ0P̂2U
−1 = E2

(
1 + σz 0

0 1 − σz

)
,

Uγ0ê⊥U−1 =

(
−e⊥σ⊥ 0

0 e⊥σ⊥

)
.
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